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TECENICAL MEMORANDUM 1388

GENERAL SOLUTIONS OF OPTIMUM PROBLEMS IN
*
NONSTATIONARY FLIGHT 1

By Angelo Miele

SUMMARY

A general method concerning optimum problems in nonstationary
flight 18 developed and discussed.

Best flight techniques are determined for the following conditions:
climb with minimum time, climb with minimum fuel consumption, steepest
climb, descending and gliding flight with maximum time or with maximum

distance.

Optimum distributions of speed with altitude are derived assuming
constant airplane weight and neglectling curvatures and squares of path
inclination in the projection of the equation of motion on the normsl
to the flight path.

The results of this paper differ from the well-known results
obtalned by neglecting accelerations with one exception, namely, the
case of gliding with maximum range.

The paper 1s concluded with criticisms and remarks concerning the
physical nature of the solutions and their usefulness for practical
applications. R

SYMBOLS .

C weight of fuel consumed

Fg = Vz/vzu = sin e/sin Y acceleration factor: ratio of effective
rate of climb to the one computed neg-
lecting accelerations

*¥'Soluzioni Generali di Problemi di Ottimo in Volo Non-Stazionario.™
L'Aerotecnica, n. 3, vol. XXXII, 1952, pp. 135-1hk2.

LThe suthor wishes to thenk Professor Placido Cicala, of the
Polytechnic of Turin and of the University of Cordoba, for his helpful
suggestions. .
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g acceleration of gravity

P 1ift -
o] weight of fuel consumed per unit time

Q ~ alrplane weight

R aerodynamic drag -

8 distance flown =

80 horizontal projection of the distance flown }
t time

T thrust

v speed,

V, =V sin © effective rate of climb

Vzu = V sin 6y rate of climb computed from the equations of uniform
flight

Z altitude

Zy altitude of tropopause

0 effective path inclination (positive for climbing flight)

path inclination computed from the equation of uniform
flight (positive for climbing flight)

1. INTRODUCTION

In the pest ailrplane performsnces have usually been determined by
‘neglecting accelerations, which results in great simpiifications in the
equations of motion. _ . -

The small curvatures associated with the usual paths of an aircraft
in. a vertical plane Jjustify the assumption of zero.centrifugsl forces.
On the other hand, the inertia tangential forces (often logically dis-
regarded in the study of performences'of meny conventional alrcraft)
must be teken into account in the analysis of high-performance jet
airplanes, because of the large wvalues of both the velocity and its
variation with the altitude.
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For instance, it is well known that the speed for best climb of any
type of alrcraeft increases with altitude (incompressible flow). This
means thet the total energy developed by the power plant is not only
used to work sgainst the serodynamic drag and the earth's gravitational
field, but also to increase the kinetic energy of the aircraft.

When the terms due to acceleration are neglected, then the esti-
mated climbing performences are too optimistlic; the values of time and
fuel consumption calculated in this way are less than the actual ones.

On the other hand it appesars that compressibllity effects can some-
times decrease the speed for best climb es altitude incresses, especially
in the stratosphere and for aircraft with high wing loading; in this case
the rate of climb computed from the equation of uniform flight is less
than the actual omne. .

The sbove-mentionéd ressons emphesize the need for an analysis of
optimum flight conditions based on the consideration of the nonuniform
character of the motion.

The first attack to the problem was performed by F. C. Phillips
(ref. 1), who proposed a kinetiec energy correction to the results pre-
dicted with the equations of & uniform flight. The calculation of such
a correction wes carried out by assuming a distribution of speed with
altitude identical with the one which meximizes the rate of climb com-
puted without accelerations. (See ref. &, also.)

Other studies, due to Otten (ref. 2) and Hayes (ref. 3), extended
Phillips' results by teking into consideration the true path inclination
end the effects of compressibility.

But only in recent years the problem has been considered and
analyzed in its entirety. In particular, the suthor (ref. 5) has solved
the problem of climb with minimum time by using a transformation based
on CGreen's theorem, while Iush (ref. 6), following a study due to
Kaiser (ref. T7), has treated the same problem by an elegant graphic-
snalytic method based on the concept of energy height (Zg = Z + Vz/bg)

The present paper generallzes a method described in a .preceding
study (ref. 5) and extends its results to the following types of flight:
climb with minimum time; climb wilth minimum fuel consumption; steepest
climb; descending or gliding flight with maximum time or with maximum
horizontal distance.

For each case the optimum technique of flight is determined; that
is to say the function V = V(Z) which, from given initisl conditions
(Vi, Z3) to fixed final conditions (Vo, Zo), will meximize or minimize

the time, the fuel consumption or the distance.
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Results are discussed and criticized. Their limitations are pointed
out; their field of applicability is indicated for the different types

of today's englne groups (reciprocating engine, air-breathing jet engines,
rockets).

2. BASIC HYPOTHESES

The following hypotheses are basic for all the work:
(a) Airplane weight is assumed constent.

(b} Curvatures and squares of path inclination are asssumed negli-
glble with regard to their effects on that pert of the drag depending on
the angle of attack. T

(c) Power.plent is of an unspecified type; but its thrust and rate
of fuel consumption are assumed to be functions of the followlng nature:

H
|

= ™(V, z) (1)
a = q(v, 2) (2)

(d) Angle between the vectors T, V 1is not teken into consideration.
(e) Only flight paths restricted to a vertical plane are considered.

(f) The aerodynemic lag is disregarded; the eir forces are calculated
es in steady flight.

3. FUNDAMENTATL EGQUATIONS

The following scalesr expressions can be derived projecting the
fundamental equatlon of the motion on the tangent and on the normal to
the flight path:

V av
- - e =
T-R Q‘l + Isi 0 (3)
l Ve a8 | l
P - 5] — —g8in © =0
Q|cos + 2 8 (1&)



\

NACA T™™ 1388 5

According to the preceding hypothesis (b), equation (%) can be
substituted by

P-Q=0 (5)

This epproximation 1is important. As a matter of fact, the rate of
climb given by

1 L&
g 4z

becomes a function of V, Z, and dV/dZ only, as can be seen from
equations (1), (5), and (6), the expressions for the serodynamic forces
and the polar.

Equation (6) shows that the effective rate of clinb and the sine of
the effectlve path inclination can be expressed as the product of the
corresponding velues obtained for uniform flight

u=(T- R)V/Q (7)
sin 8, = (T - R)/Q (8)
by the correction factor
1
By =
1+ = —
2g dz

which expresses the effects assocliated with the nonuniform character of
the motion. T

It should be noted that the preceding equations are general; there-
fore, they contain those corresponding to gliding flight as a specisal
case (T = 0).
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%. CLIMBING FLIGHT

The following ceses of flight are discussed:

(a) Climb with minimum time.

(b) Climb with minimum fuel consumption.

(c) Steepest ciimb.

It is aessumed that the thrust at all times 1s greater than the
aerodynamic dreg.

h-a. Climb With Minimum Time
The time necessary to fly from giveén initial conditions (Ve lem

to [ixed final conditions - (Vp, Zp) is

2 —
t=£2%=ﬁ(¢dvfym) . _(10_)

where
- E(_T%ET = ¢(V, 2) (11)
¥ = gy - ¥V 2) (12)

Here it is desired to det. rmine the best flight ﬁéchniqpe; that is
to say, the particular speed-height relationship V = V(Z) which
minimizes integral (10).

The investigoation is simplified 1f the properties of the function

o
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i
o(V, 2) w3 (13)

are used instead of the application of wvariational methodse.

N

The curve ® = O divides that zone of the (V, Z) plane which is of
practicel interest for flight operations (fig. 1) into two regions:
A, where ® < 0; B where w > O.

Four cases of flight (i.e. four types of boundeary conditions) are
possible according to the relative positions of polnts 1 and 2 with
respect to the curve w = 0

Case I: Point 1 in zone A; point 2 in zone B.

Case II: Point 1 in zone A; point 2 in zone A.

Case III: Point 1 in zone B; point 2 in zone A.

Cese IV: Point 1 in zone B; point 2 in zone B.

Here, only the first case is analyzed with the restriction that
Zy < 2 < Zop.

The optimm flight technique is the following:

(1) Acceleration at constant altitude 27 from Vi +to the speed
(W) defined by oV, Zz) = O.

(2) Climb from 2, to Zp using the distribution of velocities
defined by o(V, Z) = O.

(3) Acceleration at constant altitude Zp from the speed (Vyy)
defined by o(V, Zp) = 0 to Va.

2The exect study of the problem, mede using equation (4) instead of
equation (5) enables one to teke into account four boundary conditions,
e.g. values of V, 6 corresponding to initial and final altitudes.

However, the approximations involved in the present analysis permit
one to impose only two boundary conditions, e.g., values of V at the
initial and final altitudes. In fact, values of © are a consequence,
because of equations (3) and (5), of the same solution which is being
investigated in this paper.
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The minimel nature of the aforementionied speed-height relationship
will be proved by showlng that the following inequality is satisfied:

At=t-'r=95 (0 av + § az) >0 (1)

where T 1s the time necessary to pass from 1 to 2 using the optimum
path IMN2 and t is the tige necessary to fly along the arbltrary
path 1K2 (which, however, shall be physically possible under the
imposed condition T > R).

The line integral (14) cen be separated into two integrals assoclated
with the closed circuits K2NK and KMIK

At = ¢K2NK(¢ av + § dz) + Sﬁm(o av + q az) (15)

By Green's theorem the line integrals contalned in equation (15)
can be transformed into surface integrals comnected with the areas
Sp end 8y encompassed by the gbove-mentioned boundaries

At=jZB<§VE—-g;;-)dVdZ—

E!%j (16)
/]S‘A(av av az 1 |
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Because ® 1s positive in Sp end negative in Sp, it follows

that At > 0. Thus the theorem is proved5. It must be emphasized that
the optimum path includes & line MKN along which the distribution of
speed is defined by :

% - — =0 (17)

or according to equations (7), (11), and (12) by

(T ;#R)V _ g 3(T ;ZR)V " (18)

The same problem can be studied with the help of the Calculus of
Variastions. But, probsbly because of the basic hypotheses, only the
central part MKN of the optimum path can be determined in that wayh.

h-b. Climb With Minimum Fuel Consumption

The welght of fuel necessary to fly from (Z1, V1) to (Zp, Vo) is

2 2 .
c =\/n L 4z =k/ﬂ 0, AV + §; 4% 19
1 Vz 1 (@ i (19)

3For case IT which seems to have some practical interest a quasi-
optimum solution (when Vo 1s not much less then Vy) could be the
following: )

(1) Acceleration at constant altitude Z; from Vy to Vy.

(2) Clinb using the speed distribution defined by o = 0 until
the altitude Z3 corresponding to Vo 1is reached.

(3) Climb at comstant velocity Vp from Zs to Zp.

hThe study of the problem of absolute minimum without the restrictive

condition Zj < Z <Zp leads to an optimum trajectory composed of:

(1) A central pattern along which the distribution of velocities is
defined by equation (17). '

(2) Two initiel and final branches that must be flown in vertical
flight (ascending or descending) according to the boundary conditions of
the problem (see sppendix).



10 NACA TM 1388

where

e . 99 _
R~ Gy (0]
’I‘J_ =qf = WEQ—?T)- : (21)

The problem of finding the special function V = V(Z) which mini-
mizes Iintegral (19) 1s anelogous to the preceding one; hence, the solution
is of the same type. With reference to case I, and again with the _
restriction that 2) < Z < Z, the best flight technique comprises two

accelerated motions at the initial and final altitudes Z;, Zo end a
central climbing path along which the distribution of speeds is defined
by ’

an (V, Z)=-—v-"—"""=0 (22)

QT -RV| _V 3 (TQR)V
g[——q—]'ga[“—q—] ()

Y-c. Steepest Climb —

The total distance traveled by the alrcraft flying from (Zl, Vl)
to (Ze, Vo) is - -

2 =
8 —f sin 6 = . (& av + §, 4z) (2k)
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where
T )
¢, =V = —=> _ (25)
2 g(T - R)
¥p = Vi = —2— (26)

"T-R)

The speed-height function V = V(Z) which minimizes integral (24)
is analogous to those minimizing integrals ,(10) and (19).

With reference to case I and to the central pattern flown at varying
altitude the best distribution of speeds is defined by

(v, z) = J2 _ B2 _ g (27)

or, according to equations (25) and (26), by~

o(T - R) _
oV

v
£ Xz

The horizontal projJection of the distance traveled is

So=f t:ie | (29)

If the peath inclination is sufficiently small, so that it is
Justified to assume sin 0 ¥ tan 6 equation (29) becomes identical with
equation (2k). It follows that the distribution of speeds defined by
equation (28) minimizes the horizontal projection of the distance
traveled and is therefore the best from the point of view of the so-
called "steepest climb". .
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5. DESCENDING FLIGHT . - .

The following conditions of flight are examined:
(a) Déscending flight with meximum time.
(o) Descending flight wih maximum horizontal distance.

Thrust is assumed at all times to be less than the aerodynamic drag.

5-8. Descending Flight With Maximum Time

Now, case III is examined (the same nomenclature of the preceding
paregraph 1s used); namely, deceleration from high altitude and high
speed to low altitude and low speed. This condition of flight is of
more practlical interest than cases I, II, and IV.

Under the restrictive condition Z; 2 Z 2 Z,, the best flight
technique is the following (see fig. 2): -

(1) Deceleration at constant altitude Z; from V; to Vy defined
by (n(V, zl) = 0 (the function w(V, zl) is defined by equation (13)).

(2) Descending flight from Z; to Zp using the distribution of
velocities defined by oV, Z) =
<
(3) Deceleration at constant altitude Zy from the speed Vi
defined by «(V, Z,) = 0 to V,.

This statement can be easily proved using Green's theorem as in the | |
preceding paragraph. It should be noted that the digtribution of speeds
necessary to climb with minimum time is of the same form as the speed-
bheight relationship required to descend with maximum time. However both
distributions are not numerically identical since different thrusts are
required.

The results valid for gliding flight may be derived from the above
as a limiting process by letting T — O.

The equation for the optimum speed-height function for the central
pattern MN flown at variable descending altitude is giﬁen by .

av g az ' , ; '
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5-b. Descending Flight With Maximum Horizontal Distance

The best technlque for this type of flight is analogous to that
described in the preceding parsasgrsaph.

It consists of two deceleratlons at constant altltude Zys 2p and
of a central pattern defined by p(V, Z) = 0. (Cese III).

For gliding flight the best distribution of velocities can be
obtained as a perticuler case of equation (28) for T — ©

%ﬁvi - (31)

® I
1%

Tt should be noted that the solution defined by equation (31) is
identical with the one that can be obtained from an analysis based on
the equations of uniform flight if the varisation of the drag with both

the Reynolds and Mach numbers

As a meatter of fact the
case, on the dynamic pressure
equation (31) is given by the

is neglected.

serodynamic drag depends, in this latter
only. Thus the practical solution of
equivalent expresslions

@:?ﬁ:o (32)

6. REMARKS AND CRITICISMS ON THE ACHIEVED SOLUTIONS

A short review of the obtained results will clarify thelr physical
nature and will be helpful from the point of view of practical applications.
6-a. Comparison Between Stationary and Instationery Solutions5

Solutions commonly used in the practical applications of the
Mechanics of Flight are those derived from a "stationary" anaLysiss.

5Withln the limits of the present investigation the term stationary
(instationary) solution" means a solution obtained neglecting (taking into.
account) inertia tangentiel forces. This terminology is used for the sake
of brevity. The so-called aerodynamic leg is disregerded. In other words
the air forces are calculated as in a steedy flight.
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They are the fallowlng:

For climb with minimum time

o(TV - RV) _

av (33)
For climb with minimum fuel consumption = __ .
d [TV - RV .
S[IV - RVi_ 4
S 2
For steepest climb . _ -
(T - R) _
= o (35)
For maximum endurance in gliding o
BV - o (56)
av _ .
For meximum range in gliding R - -
3R }
= =0
- (37)

These solutions could also be achleved as a particular case of those
glven in this paper 1f one ‘supposes that the.motion takes place in an _
ideal ambient of constent air density. In fact in this latter case the
derivatives of T, g, and R with respect to Z +vanlsh and equations (18),
(23), (28), (30), and (31) are reduced to equations (33), (34), (35), (36),
and (37), respectively.



NACA TM 1388 15

It is evident that the second members of equations (18), (23), (28),
(30), and (31) express synthetically the contribution given by the accel-
eration to the equation defining the optimum speeds.

6-b. The Case S =0
ov

If power plant is of ﬁuch a type as to Justify the above-mentioned
assumption, the "stationary solutions for minimum time end for minimum
fuel consumption become identical,

" Therefoge, it is logiceael to suppose that in this case the

instationery solution for minimum time willl not differ too much from
the one optimum for minimum fuel consumption. Some numerical calcule~
tions have confirmed this last concept.

6-c. The Case gq = Constant

The "instationary" solutions for minimum time and for minimum fuel
consumption become identical (rocket-powered aircraft).

6-d. Discontinuity of the Solutions at the Tropopause

The optimum speed-height relationships given by equations (18),
(23), (28), (30), and (31) have = dilscontinuity at the tropopause. This
fact is related to our manner of conceiving the standard atmosphere in
which the derivetives with respect to h of the density, tempersture
and pressure have two values at 2Z = Zy.

As & consequence, for any case of flight there are two optimum
speeds at the tropopause, the one being deduced by introducing into
equations (18), (23), (28), (30), end (31) the properties of the standard
troposphere (Vf)'and the other by introducing into the same equations the
properties of the standasrd stratosphere (Vg).

The mechanical meaning of the aforementioned discontinuity6 may be
understood using Green's theorem as in the previous sections. For
instance, in the case of & turbojet alrcraft this indicates the necessity
of sccelerating the aircraft st Z = Zy from Vg(Vg) to Vg(Vy) if the

6Analogously a discontinuity in the optimum speed-helght relation-
ship can be detected at the critical altitude (Zc) of en aireraft powered
by & reciprocating engine-propeller combination. This fact depends on
the existence of two velues of ®P/8Z at Z = Zo (P = shaft horsepower
of a conventional engine).
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achievement of the best climbing performances is desired (see fig. 3).

As a consequence the optimum flight technique for climb with minimum time
(case I) from (Vy, Zy < Zx) to (Vp, Zp > Z,) under the limiting conditions
73 £ 2 < 2o, consists of:

(1) Acceleration at constant altitude Zy from Vi to VW defined
by oV, Z1) = O.

(2) Climb from (Vy, Z1) to (Vi, Zy) using the speed-height relation-
ship defined by w(V, Z) = O. -

(3) Acceleration at constant altitude Z, from Vi to Vg.

..(4) climb from (Vs, Zx) to (Vy, Zo) using again the distribution of
. speeds defined by (V, Z) = O.

(5) Acceleration at constant altitude Zp from Vy to Vo.

6-e. Hypothesis Concerning Curvature and Path Inclination

The practical consequence of the hypothesis (b) of section (2) is
an gpproximete calculation of that part of the drag which depends on the
lift. The errors involved have small importence for mehy of the cases
of flight here considered. _ } L _

In any case the following concept should be emphasized: the use of
the solutlons here achieved is logical only if the errors associated with
the neglect of curvatures and squares of the path inclination are small
with respect to those avoided taking into account the tangential
sccelersations.

A systematic investigation of the exact limits of gpplicabiliiy of
the present theory to the various types of modern asircraft is beyond the
gcope of this report. However, it seems possible to antlcipate that the
hypotheses concerning the curvatures and the path inclinations aqﬁ Jjusti-
fied in the following cases:

(1) Cilimb with minimum time and with minimum fuel consumption: Jjet-
propelled aircreft and conventional aircraft with high wing-and-power
loadings.

(2) Steepest climb: turbojet aircraft with low specific thrust (T/Q
and good aerodynsmic efficiency (results concerning the steepest climb are
not only influenced by the approximations made in the projection of the
equation of motion on the normal to the flight path but also by the sub-
stitution +ten 6 in lieu of sin ¢ in the projection of the equation of
motion on the tangent to the flight path).
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(3) Gliding flight: airplenes having high wing loading and good
aerodynamic efficiency.

6-f. Hypothesis Concerning the Weight of the Aircraft

The weight of the aircraft changes during the flight because of the
fuel consumption. Conseguently, the true optimum speed-height relation-
ships are somewhat different from the ones previously derived. The true
rates of climb are greater than those calculated by assuming Q = Constant.
According to the practical values of dQ/dt the following remarks are
formulated:

(1) Aircraft powered by sir-breathing engines: The speed-height
functions previously derived are substantially correct. If more preci-
sion 1s desired the weight changes can approximately be taken into account
by iterating the calculations as follows:

(a) Calculate the optimum distributions of speeds with equations (18),
(23), and (28) according to the case of flight and supposing Q = Constant.

(b) Determine the approximate values of the fuel consumption on the
basis of the gbove-mentioned distributions of speeds.

(¢) Calculate the instantaneous weights of the aircraft at any
altitude.

(d) Determine the new optimum speed-height functions by introducing
into equations (18), (23), and (28) the instantaneous weights. Calculate
also the new values of integrals (10), (19), and (24%).

(2) Rocket-powered aircraft: From a purely theoretical standpoint
the results here derived cannot be considered valid for this kind of air-
craft because of the important dynamlcal effects assoclated with the
changes of the airplane weight.

Notwithstanding, the author believes that the obtained solutions
are very clogse to the true soclutions for tropospheric flight gbove all
if iterative procedures, like the one outlined above, are applled.

That depends on the fact that the only term of equation (18)
depending on the weight is that part of the drag which is & function of
the 1lift; that is to say the so-called "induced" drag, which is small at
low altitudes because of the low angles of attack used by rocket-powered
alrcraft in the climbing flight.

6-g. Additional Remarks Concerning Centripetal Accelerations

The neglect of curvatures (and therefore of the deviation times
necessary to pass from one branch to another of the optimum path) has a
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qualitative influence on the results leading to discontinuous solutions;
while it is logical to think thaet the exact study of the problem made
with variational methods and using equation (4) instead of equation (5) r
wollld bring continuous speed distributions. _ :

Consequently, the results contained in this paper are to be con-
sidered as limiting results whose degree of sgreement with experiments
increase as the ratio of sum of deviation times to the total time
decresase.

6-h. Considerstions Related to the Method Used in This Paper

The mein effect of the hypotheges concerning weight, curvatures
and path lnclinations has been the possgibility of expressing the sero-
dynamic drag as a function of the type . . =

R = R(V, 2) | (38)

Tt follows that 1f the basic hypotheses are changed formulas (18),
(23), (28), (30), and (31) msy retain their validity provided the drag
remain still a functlon of only the speed and the altitude. .

7. CONCLUSIONS - . L

A general method concerning optimum problems in nonstationary
filight is developed and discussed. Various conditions of flight in a
vertical plane (climb with minimum time, climb with minimum fuel con-
sumption, steepest climb, descending and gliding flight with maximum
time or space) are Btudied the corresponding best technlques of flight,
i1.e. the optimum speed—height relationships, are determined, _

Each optimum path consists of an initial and s final branch which
depend on the boundary conditlons of the problem and a central portion
which is flown at varisble gliitude and speéd.

Along this central pattern the speed~-height relationship obeys the
following rule:

If X=x(V, 2} is the function Whose maximum or minimum.with
respect to the speed ) ) . - A

=0 (29)
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defines the best speed-height relationship when a given optimum problem
is studied with the equations of uniform flight, then the modified solu~
tion of the s&ame problem when the effects of acceleration are considered
is defined by

g- =
3V (ko)

® I<
Ky

The optimum speed-helght relationships have a discontimuity at the
tropopause and differ in general from the solutions based on the assump-
tion of uniform flight with one exception, namely, gliding with maximum
range. This latter result is valid if the veariation of the drag with
both the Mach end Reynolds numbers 1s neglected.

The prectical application of the method given in this paper to the
perticular cese of turbojet alrcraft will be published soon.
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APPENDIX

PROBLEMS (OF ABSOLUTE COPTIMUM

A number of minimal problems have been treated In the preceding
paragraphs with the help of some restrictlve conditions. For example,
the restrictive condition 2] < Z £ Zo has been used. to study the climb

with minimum time (caese I). In other words the probleém of accelerating
and clinmbing from low speed and low altitude to high speed and high alti-
tude has been analyzed by considering only paths internal to the region
of space limited by the horizonital planes corresponding to the iniltial
and final heights. o

However, it may be noted that the method given in thls paper msy
be easily extended to the study of problems of gbsolute optimum.

If no restrictive condition 1s imposed to the altitude, the speed-
height function optimum to climb with minirmum time consists of a central
branch whose equation ig still w = 0 and of two initisl and final por-
tions which must be flown in vertical flight (ascending or descending)
accord%ng to the boundasry conditions of the problem (see table I and
fig. 4).

This statement may be easily proved by applying Green's theorem as N
shown in section L.

The main comments concerning the paths 1ndicated in figure 4 are
the followling:

(a)} For jet-propelled sircraft the hypothesis P = Q leads to
errors which are small along the line whose equation is w =0 and
also for the vertical branches 1M and N2 provided they are flown at
high speed. .

On the other hand the errors may probebly be of some importance
for the verticel branches if a part of them.is to be flown at relatively
low speed (that depends evidently on the boundery conditions of the
problem). .

(p) The optimum speed-height relationships shown in figure 4 have
a discontinuous character. On the other hand 1t is logical to presume
that, should the problem be studled with the use of the exact equations
of the motion, results would have a continuous cheracter.

Consequently, the results contained in this paper mist be considered
as limiting results as shown in section 6-g. . S
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In addition, it might be well to bear in mind that, even if an
exact study of the problem were possible from a mathematical standpoint,
the conclusions would still have to be submitted to other limitations,
nemely, those imposed by the physiological strength of the pilot and
those imposed by the structural strength of the aircraft.

Translated by A. M‘:Lele7

7Translated by the author, who wishes to express his thanks to
Dr. Nathan Ness and to Mr. Lawrence S. Galowin for thelr kind corrections
of the English manuscript.
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SPEED~HEIGHT RELATIONSHIPS OPTIMUM FOR CLIMBING WITH MINIMUM TIME

Speed-height function

Case of Point 1 Point 2

Flight is in zone | 1s in zone Brench 1M | Branch MN | Brench Np

I A B Vertical ®w=0 Vertical
dive dive

II A A Vertical w=0 Vertical
dive c¢limb

ITT B A Vertical w=0 Vertical
climb climb

v B B Vertical w=0 Vertical
climb dive
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Figure 1.- Speed-height relationship IMN2 for climb with minimum
time; case I; 2 <.Z < Zg; initlal and fina] altitudes are either
both tropospheric or both stratospheric.

N

>V

Figure 2.- Speed-height relationship IMNZ2 for descending flight with
maximum time; case Ill; Z4 2 Z > Z9; initial and final zltitudes are
assumed either both tropospheric or both stratospheric,
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w=0
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Figure 3.- Speed-height relationship 1MtSN2 for climb with minimum
time; case I; Z1 < Z S Zg; initial altitude is assumed to be
tropospheric; final altitude is assumed to be stratospheric.

I 2 (1L

Figure 4.- Speed-height relationship 1MN2 for climb with minimum
time; initial and final altitudes are assumed either both tropospheric
or both stratospheric.
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